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Ideal trefoil knot
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A set of self-contact points of the most tight, parametrically tied trefoil knot is determined. The knot is
subjected to further tightening procedure based on the shrink-on-no-overlaps algorithm. Changes in the struc-
ture of the set of the self-contact points are monitored and the final form of the set is determined.
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I. INTRODUCTION listed in[11] and[12]. In a few cases, SONO managed to
find better conformations than the simulated annealing pro-
Finding the best way of packing a tube within a box cedureg[9]. However, for the most simple knots, in particular,
seems to be rather a gardening problem than a scientific onthe trefoil knot, the simulated annealing and SONO provided
However, the optimal single helix, discovered in a computelidentical results; the\ values are identical within experi-
simulation study of this problenil] and[2], proves to be mental errors. This strongly suggests that no better confor-
ubiquitous in many proteins as theirhelical parts. As sug- mations of the knot exist. We feel obliged to emphasize,
gested in[3], it also seems that the closely packed doublehowever, that it is only an intuitively obvious conclusion —
helix appearing in the process of twisting two ropes togetheno formal proofs have been provided so far. As indicated in
[4] have been already discovered and applied by naturé3], we are in a situation similar to that, which lasted in the
Laboratory experiments allow one to observe in the real timgroblem of the best packing of spheres for 400 years. That
how the optimal helices are formed in various systems, e.ghe face centered cubic and hexagonal close packed lattices
the bacterial flagellaks] or phospholipid membrang§]. were among the structures that minimize the volume occu-
Both processes, of packing the ropes and twisting thenpied by closely packed hard spheres seemed to be obvious
together, occur simultaneously when a knot tied on a ropsince the times of Kepler, however the formal proof of the
becomes tightened. The problem of finding the most tightconjecture was provided but a few years a48]. Waiting
least rope consuming conformations of knots was indeperfor the formal proofs that what we have observed in the knot
dently posed and indicated as essential by different authorsightening numerical experiments is the ideal conformation
for references sdgr]. Knots in such optimal, most tight con- of the trefoil, seems to be a too cautious attitude. Thus, after
formations are often calledeal, a term proposed by Simon a few years of experimenting, we decided to present the best,
[8], and introduced into the literature by Stasiak and codeast rope consuming conformation of the trefoil knot we
workers[9]. Ideal conformations minimize the value of the managed to find. We compare it with the most tight confor-
size-invariant variablé\ =L/D, whereL andD are, respec- mation of the knot that can be found within the analytically
tively, the length and the diameter of tiperfect rope(de-  defined family of torus knots. In particular, we describe the
fined below on which the knot is tied. The only knot whose qualitative change in the set of self-contacts that takes place
ideal conformation is known at present is the trivial knotwithin the trefoil knot during the tightening process. We be-
(unkno). See Fig. 1. Its length in the ideal, circular confor- lieve that some of the features of the self-contact set we have
mation equalsrD, thus A = 7. Finding the ideal conforma- found may be present also in ideal conformations of other
tion of a nontrivial knot is a nontrivial task. Initiated a few knot types.
years ago search for the ideal conformations of nontrivial An alternative method of searching for the most tight con-
knots continues. formations of knots consists in inflating the rope on which
One of the algorithms used in the search is SONCthe knot has been tied In such a process the length of the
(shrink-on-no-overlaps[10]. SONO simulates a process in rope is kept fixed. The maximum radius to which the rope in
which the rope, on which a knot is tied, slowly shrinks. Thea given conformation of a knot can be inflated is closely
rope is allowed to shrink only when no overlaps of the rope
with itself are detected within the knot. When such overlaps
occur, SONO modifies the knot conformation to remove
them. If this is no more possible, the process ends. Unfortu-
nately, ending of the tightening process does not mean that
the ideal conformation of a given knot was found. The tight-
ening process could have stopped also because a local mini-
mum of the thickness energy was entered. The possibility
that there exists a different, less rope consuming conforma-
tion, cannot be excluded.
SONO has been used in the search of ideal conformations
of both prime and composite knots. Parameters of the least
rope consuming conformations found by the algorithm were FIG. 1. Ideal unknot.
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FIG. 3. The trefoil knot is a torus knot. It can be conveniently

FIG. 2. Schematic construction of the perfect rope. Its perpentied on the surface of a torus.
dicular sections are always circular. None of the sections are al-

lowed to overlap.

related with the injectivity radius considered in detail by
Rawdon[14].

Il. THE PERFECT ROPE

It is the aim of the computer simulations we perform to
simulate the tightening process of knots tied on pleefect
rope perfectly flexible, but at the same time perfectly hard in

its circular cross section. The surface of the perfect rope can
be seen as the union of all circles centered on and perpeﬁ1

dicular to the knot axi€. See Fig. 2.

We assume thatC is smooth and simple, i.e., sel
avoiding, what guaranties that at each of its pointthe
tangent vectors(r), and thus the circular cross section, are
well defined. The surface remains smooth as longashe
local curvature radius |, of the knot axis is nowhere smaller
thanD/2, (b) the minimum distance of closest approach d
is nowhere smaller theD/2 .

The minimum distance of the closest approach) ,d
known also as theloubly critical self-distancesee[8], is
defined in[15,16, as the smallest distance between all pair
of points (4,r,) on the knot axis, having the property, that
the vector (,—r4) joining them is orthogonal to the tangent
vectors(r,),7(r,) located at the points:

f-

d,(C)= min {|ry—rq|:7(ry)L(ro—ry),7(ry)L(r—ry}.

ri,rpeC
1)

As shown by Gonzalez and Maddodks], the two con-

ditions can be replaced by a single condition providing tha{

the notion of theglobal curvature radiusg is introduced:

min  p(ry,ry,ra), 2

r2,r3eC
[ #FIyF 370y

pa(ry)=

where, p(rq,r,,r3) is the radius of the unique circléhe
circumcircle that passes through all of the three points:
r,,r, andrs. Using the notion of the global curvature, the

S

IIl. PARAMETRICALLY TIED TREFOIL KNOT

The trefoil knot can be tied on the surface of a torus. See
Fig. 3. Consider the set of three periodic functions:

x=[R+rcog2 v, wt)]sin(2v,mt) ©)]
y=[R+r cog2 vy7mt)]coq2v, mt), 4
z=rsin(2 vy, mt). 5)

The trajectory determined by Eg8)—(5) becomes closed
St spans a unit interval. For the sake of simplicity we shall
consider thd 0,1) interval. For all relatively prime integer
values of vy, v, Egs. (3)-(5) define self-avoiding closed
curves located on the surface of a torBsdenotes here the
radius of the circle determining the central axis of the torus
while r denotes the radius of its circular cross-sections. For
the trefoil knot, frequencies,, v, equal 2 and 3, respec-
tively. In what follows we consider knots tied on a rope;
trajectories defined by Eq§3)—(5) determine position of its
axis.

The (v1,v,) and the ¢,,v;) torus knots are ambient iso-
opic, i.e., they can be transformed one into another without
cutting the rope on which they are ti¢dl7]. As shown pre-
viously, the (2,3) version of the trefoil is less rope consum-
ing[12]. Thus, the (3,2) version will not be discussed below.

Assume that the trefoil knot whose axis is defined by Eqs.
(3)—(5) is tied on a rope of diameté=1. In what follows
we shall refer to it as th@arametrically tied trefoil(PTT)
knot In such a case, the radiusof the torus on which the
axis of knot is located, cannot be smaller than 1/2; below this
value overlaps of the rope with itself will certainly appear; at
=1/2 the rope remains in a continuous self-contact along
he torus axis. To keep the self-contacts we assume in what
follows thatr =1/2. To check, if the knot is free of overlaps
in other regions, one can analyze the map of its internal
distances. Let; andt, be two values of the parameteboth
located in thg 0,1) interval. Let &,y1,21) and &,,Y»,2,)
be the coordinates of two points indicated within the knot
axis byt; andt,, respectively. Let(t,,t,) be the Euclidean
distance between the points:

t

d(ty,t) = V(Xa—= X))+ (Ya—y1)?+ (22— 2)%  (6)

condition that guaranties smoothness of the knot surface can

be reformulated agr) the global curvature radiysg of the
knot axis is nowhere smaller thd2.

Analysis of the conformations produced by the SONO
algorithm proves that condition&®) and (b), [and (c)] are
fulfilled.

The map of the function, see Fig. 4, displays a mirror
symmetry induced by the equalit(t;,t,) =d(t,,t;).
Looking for possible overlaps within the knot one looks

for regions within the internal distances landscape, where

d(t,,t,)<1. The most visible depression within the land-

031801-2



IDEAL TREFOIL KNOT PHYSICAL REVIEW E 64 031801

line of contacts

FIG. 4. The map of the intraknot distances of the most tight PTT
knot.

scape of the interknot distances is located around the diago-

nal wheret;=t,. As easy to seeg](t,t,) =0 along the line, FIG. 6. Location of the self-contact points within the most tight
but for obvious reasons this does not imply any overlap®TT knot.
within the knot. IV. SONO TIED TREFOIL KNOT

Another valley within whichd(t,,t,) may go down to the
critical 1 value is localized in the vicinity of lines defined by ~ Considerations presented above indicated the valug of
equality |t,—t,|=1/2. To see, if in the vicinity of the lines at which the PTT knot reaches its most tight conformation.
the height really drops to or even below 1, we plotted thelhe lengthL of the rope engaged in this conformation of the
map of thed(t, ,t,) function in such a manner, that regions trefoil knot equals 17.0883. Can one tie the trefoil knot using
lying below the arbitrarily chosen 1.005 level were cut off. & Shorter piece of the rope? Theoretical considerations indi-
As seen in Fig. 5 there are four such regions within the PTTEa€ that this possibility cannot be excluded. As proven in
knot: one in the shape of a sinusoidal band and three iLlS] the piece of rope used to tie the .tref0|l kn.ot.cannot be
shapes of almost circular patches. shorter tharbm=(2+ \/5)77~ 10.72. Th|s Iowgr limit leaves

The band contains in its middle the above mentioned con® lot of place for a possible further tightening of the knot.

tinuous line of self-contacts points; it is the axis of the torus’A‘ppl.'Cfrs‘tIon of SONO re\_/eals that the tlghtenmg is possible
roviding the conformation of the knot is allowed to leave

03 dvi\;r'ﬁhlthenlino,: 'S ?netd'_ Ivr;]eel;lgcula:npatcihes (r:r:)r“amvtfte he subspace of the parametrically tied torus conformations.
acditional contact points, €comes 100 small, OVer™ ;g happens spontaneously in numerical simulations in

laps appear around _the poi_nts. NL_Jmeric_aI_ analysis We Pefypich the most tight PTT knot is supplied to SONO as the
formed reveals thawith the five decimal digits accuracy we jitial conformation. SONO algorithm manages to make it

applied the overlaps occurring within these regions vanishgporier, In the simulations we performed, SONO reduced the
aboveR= .1.1158. Foer 1_.1159 the dilstance between the length of the knot by about 4% to,,,= 16.38. The discrete
closest points located within these regions of the knot equalgepresentation of the knot used in the simulations contained
0.9999. ForR=1.1158 the distance is equal to 1.0000.N=327 nodes. Below we describe the final conformation.
Where, within the PTT knot the self-contact points are lo-For the sake of simplicity we shall refer to trefoil knots pro-
cated is shown in Fig. 6 cessed by the SONO algorithm as the SONO tied trefoil
(STT) knots.

The differences in the conformation of the most tight con-
formations of the PTT and STT knots is a subtle one. The
essential difference lies in the structure of the sets of their
self-contact points. As mentioned above, the circular line of
self-contact points present in the family of the PTT knots
stays intact af is changed within the family. Tightening of
a PTT knot achieved by decreasing the radusf the torus
stops when additional dscrete points of contacts appear at
three locations within the knot. This happensRabecomes
equal 1.1158. Further tightening of the knot within the fam-
ily of PTT knots is not possible, it becomes possible within
the family of the STT knots.

During the tightening process carried out by SONO, the
set of the self-contact points undergoes both qualitative and
guantitative changes. First of all, the line of contacts present
in the PTT knot changes its shape becoming distinctly non

FIG. 5. Maps of the intraknot distances as seen from above. Leféircular. Secondly, the three contact points give birth to
— the most tight PTT knot. Right — the most tight STT knot. The pieces of new line of self-contacts. Unexpectedly, the new
sets of the self-contact points are located within the white regions opieces do not connect onto a new line, wiggling around and
the map. crossing the old line, but they are mounted into the old line
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FIG. 8. Location of the line of self-contact points within the
most tight STT(ideal knot. A part of the rope was removed.

FIG. 7. The set of the self-contact points as seen within theThe maxi_mum Ioc_al -C-urvature -a-nd the mir_1imum double criti-
. C cal self-distance limiting conditions are simultaneously met.
intraknot distances map. The situation in the case of the trefoil knot, the simplest
. . - ._non trivial prime knot, is radically different. Here the most
in sucha manner, that a single, sel.f-e}vmdmg and knotted I'n‘ﬁ ht parametrically defined conformation proves to be not
of self-contacts is created. That this is the case was re_veale;é’eaL As demonstrated by the present authors, it can be tight-
by a precise analysis of the interknot distances function. Ayned more with the use of the SONO algorithm. The set of
map covering the interknot distances only within the Veryy,e seifcontact points becomes rebuilt during the tightening
thin [1.00000,1.000 Opinterval shows two separated lines, nrocess. Its topology becomes different. In the case the PTT
see Fig. 7, corresponding to a single, self-avoiding and knotn ot the set of the self-contact points consists of a circle and
ted line of contact. See Fig. 8. _ three separated points. As the numerical experiments per-

In addition to the line, a set of three points of self-contactsyymeq by us suggest, that in the case of the STT knot, the

is formed. The points are located at places where the line ot of the self-contact points turns unexpectedly into a single
self-contacts becomes almost tangent to itself. The Selfine The structure of the set of self contact points in other
contact line runs twice around the knot. As a result, each Ohrime knots remains an open question.
the circular cross-sections of the rope stays here in touch The choice of the parametrization, EG3)—(5), which we
with another two such sections. The close packed Structurgseq 1o define the conformation from which SONO started
formed in such a manner is much more stable than the struges 1not tightening action, was stimulated by the fact that the
ture of the most tight PTT knot, where single contacts wergefojl knot is a torus knot. Following Trautwein and Kauff-
predominant. Let us note, that Fig(el presented in Ref. 51171 one could try to construct Fourier parametrizations
[16] a similar self-contact line structure can be seen. Unforyna; \would be located closer to the most tight conformation
tunately, inspecting the figure one cannot see, if the “selfyonq py SONO. Preliminary calculations we performed in-
contact spikes” shown there form a single, self-avoiding,jicated that to reproduce with a reasonable accuracy the
knotted oradouble, crossing itself Ime._The problem was notr cture of the most tight STT knot one has to take into
discussed in the text. Let us emphasize, however, that thg.cont a large number of harmonics. One of the reasons of
difference between the two possibilities is confined to a zerog,o gjow convergence of the Fourier parametrization is that
measure set. the Cartesian coordinate system is not well suited; in the case
of torus knots the toroidal coordinate system is more natural.
V. DISCUSSION Finding a precise but concise parametric description of the

Ideal knots are objects of which very little is known. The most tight trefoil knot is an interesting task.

only knot whose ideal conformation is known rigorously is
the unknot. Its ideal conformation, a circle of a radius iden-
tical with the radius of the rope on which it is tied, can be P.P. thanks Andrzej Stasiak, John Maddocs, Kenneth Mil-
conveniently described parametrically. The set of the selflett, Eric Rawdon, Robert Kusner, and Jason Cantarella for
contact points is here limited to a single point: the center ohelpful discussions. This work was carried out under Project
the circle. All circular sections of the rope meet at this point.No. KBN 5 PO3B 01220.
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