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Ideal trefoil knot
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A set of self-contact points of the most tight, parametrically tied trefoil knot is determined. The knot is
subjected to further tightening procedure based on the shrink-on-no-overlaps algorithm. Changes in the struc-
ture of the set of the self-contact points are monitored and the final form of the set is determined.
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I. INTRODUCTION

Finding the best way of packing a tube within a b
seems to be rather a gardening problem than a scientific
However, the optimal single helix, discovered in a compu
simulation study of this problem,@1# and @2#, proves to be
ubiquitous in many proteins as theira-helical parts. As sug-
gested in@3#, it also seems that the closely packed dou
helix appearing in the process of twisting two ropes toget
@4# have been already discovered and applied by nat
Laboratory experiments allow one to observe in the real t
how the optimal helices are formed in various systems,
the bacterial flagellas@5# or phospholipid membranes@6#.

Both processes, of packing the ropes and twisting th
together, occur simultaneously when a knot tied on a r
becomes tightened. The problem of finding the most tig
least rope consuming conformations of knots was indep
dently posed and indicated as essential by different auth
for references see@7#. Knots in such optimal, most tight con
formations are often calledideal, a term proposed by Simo
@8#, and introduced into the literature by Stasiak and
workers@9#. Ideal conformations minimize the value of th
size-invariant variableL5L/D, whereL andD are, respec-
tively, the length and the diameter of theperfect rope~de-
fined below! on which the knot is tied. The only knot whos
ideal conformation is known at present is the trivial kn
~unknot!. See Fig. 1. Its length in the ideal, circular confo
mation equalspD, thusL5p. Finding the ideal conforma
tion of a nontrivial knot is a nontrivial task. Initiated a fe
years ago search for the ideal conformations of nontriv
knots continues.

One of the algorithms used in the search is SON
~shrink-on-no-overlaps! @10#. SONO simulates a process
which the rope, on which a knot is tied, slowly shrinks. T
rope is allowed to shrink only when no overlaps of the ro
with itself are detected within the knot. When such overla
occur, SONO modifies the knot conformation to remo
them. If this is no more possible, the process ends. Unfo
nately, ending of the tightening process does not mean
the ideal conformation of a given knot was found. The tig
ening process could have stopped also because a local
mum of the thickness energy was entered. The possib
that there exists a different, less rope consuming confor
tion, cannot be excluded.

SONO has been used in the search of ideal conformat
of both prime and composite knots. Parameters of the l
rope consuming conformations found by the algorithm w
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listed in @11# and @12#. In a few cases, SONO managed
find better conformations than the simulated annealing p
cedure@9#. However, for the most simple knots, in particula
the trefoil knot, the simulated annealing and SONO provid
identical results; theL values are identical within experi
mental errors. This strongly suggests that no better con
mations of the knot exist. We feel obliged to emphasi
however, that it is only an intuitively obvious conclusion —
no formal proofs have been provided so far. As indicated
@3#, we are in a situation similar to that, which lasted in t
problem of the best packing of spheres for 400 years. T
the face centered cubic and hexagonal close packed lat
were among the structures that minimize the volume oc
pied by closely packed hard spheres seemed to be obv
since the times of Kepler, however the formal proof of t
conjecture was provided but a few years ago@13#. Waiting
for the formal proofs that what we have observed in the k
tightening numerical experiments is the ideal conformat
of the trefoil, seems to be a too cautious attitude. Thus, a
a few years of experimenting, we decided to present the b
least rope consuming conformation of the trefoil knot w
managed to find. We compare it with the most tight conf
mation of the knot that can be found within the analytica
defined family of torus knots. In particular, we describe t
qualitative change in the set of self-contacts that takes p
within the trefoil knot during the tightening process. We b
lieve that some of the features of the self-contact set we h
found may be present also in ideal conformations of ot
knot types.

An alternative method of searching for the most tight co
formations of knots consists in inflating the rope on whi
the knot has been tied In such a process the length of
rope is kept fixed. The maximum radius to which the rope
a given conformation of a knot can be inflated is close

FIG. 1. Ideal unknot.
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related with the injectivity radius considered in detail
Rawdon@14#.

II. THE PERFECT ROPE

It is the aim of the computer simulations we perform
simulate the tightening process of knots tied on theperfect
rope: perfectly flexible, but at the same time perfectly hard
its circular cross section. The surface of the perfect rope
be seen as the union of all circles centered on and per
dicular to the knot axisC. See Fig. 2.

We assume thatC is smooth and simple, i.e., sel
avoiding, what guaranties that at each of its pointsr the
tangent vectorst(r ), and thus the circular cross section, a
well defined. The surface remains smooth as long as:~a! the
local curvature radius rk of the knot axis is nowhere smalle
thanD/2, ~b! the minimum distance of closest approach d*
is nowhere smaller thenD/2 .

The minimum distance of the closest approach d* ,
known also as thedoubly critical self-distance, see@8#, is
defined in@15,16#, as the smallest distance between all pa
of points (r1 ,r2) on the knot axis, having the property, th
the vector (r22r1) joining them is orthogonal to the tange
vectorst(r1),t(r2) located at the points:

d* ~C!5 min
r1 ,r2PC

$ur22r1u:t~r1!'~r22r1!,t~r2!'~r22r1!%.

~1!

As shown by Gonzalez and Maddocks@16#, the two con-
ditions can be replaced by a single condition providing t
the notion of theglobal curvature radiusrG is introduced:

rG~r1!5 min
r2 ,r3PC

r1Þr2Þr3Þr1

r~r1 ,r2 ,r3!, ~2!

where, r(r1 ,r2 ,r3) is the radius of the unique circle~the
circumcircle! that passes through all of the three poin
r1 ,r2 and r3. Using the notion of the global curvature, th
condition that guaranties smoothness of the knot surface
be reformulated as:~c! the global curvature radiusrG of the
knot axis is nowhere smaller thanD/2.

Analysis of the conformations produced by the SON
algorithm proves that conditions~a! and ~b!, @and ~c!# are
fulfilled.

FIG. 2. Schematic construction of the perfect rope. Its perp
dicular sections are always circular. None of the sections are
lowed to overlap.
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III. PARAMETRICALLY TIED TREFOIL KNOT

The trefoil knot can be tied on the surface of a torus. S
Fig. 3. Consider the set of three periodic functions:

x5@R1rcos~2 n2 p t !#sin~2n1pt ! ~3!

y5@R1r cos~2 n2pt !#cos~2n1pt !, ~4!

z5r sin~2 n2 p t !. ~5!

The trajectory determined by Eqs.~3!–~5! becomes closed
as t spans a unit interval. For the sake of simplicity we sh
consider the@0,1) interval. For all relatively prime intege
values of n1 , n2 Eqs. ~3!–~5! define self-avoiding closed
curves located on the surface of a torus.R denotes here the
radius of the circle determining the central axis of the to
while r denotes the radius of its circular cross-sections.
the trefoil knot, frequenciesn1 , n2 equal 2 and 3, respec
tively. In what follows we consider knots tied on a rop
trajectories defined by Eqs.~3!–~5! determine position of its
axis.

The (n1 ,n2) and the (n2 ,n1) torus knots are ambient iso
topic, i.e., they can be transformed one into another with
cutting the rope on which they are tied@17#. As shown pre-
viously, the (2,3) version of the trefoil is less rope consu
ing @12#. Thus, the (3,2) version will not be discussed belo

Assume that the trefoil knot whose axis is defined by E
~3!–~5! is tied on a rope of diameterD51. In what follows
we shall refer to it as theparametrically tied trefoil~PTT!
knot. In such a case, the radiusr of the torus on which the
axis of knot is located, cannot be smaller than 1/2; below t
value overlaps of the rope with itself will certainly appear;
r 51/2 the rope remains in a continuous self-contact alo
the torus axis. To keep the self-contacts we assume in w
follows thatr 51/2. To check, if the knot is free of overlap
in other regions, one can analyze the map of its inter
distances. Lett1 andt2 be two values of the parametert, both
located in the@0,1) interval. Let (x1 ,y1 ,z1) and (x2 ,y2 ,z2)
be the coordinates of two points indicated within the kn
axis byt1 andt2, respectively. Letd(t1 ,t2) be the Euclidean
distance between the points:

d~ t1 ,t2!5A~x22x1!21~y22y1!21~z22z1!2. ~6!

The map of the function, see Fig. 4, displays a mirr
symmetry induced by the equalityd(t1 ,t2)5d(t2 ,t1).

Looking for possible overlaps within the knot one loo
for regions within the internal distances landscape, wh
d(t1 ,t2),1. The most visible depression within the lan

-
l-

FIG. 3. The trefoil knot is a torus knot. It can be convenien
tied on the surface of a torus.
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IDEAL TREFOIL KNOT PHYSICAL REVIEW E 64 031801
scape of the interknot distances is located around the di
nal wheret15t2. As easy to see,d(t1 ,t2)50 along the line,
but for obvious reasons this does not imply any overla
within the knot.

Another valley within whichd(t1 ,t2) may go down to the
critical 1 value is localized in the vicinity of lines defined b
equality ut22t1u51/2. To see, if in the vicinity of the lines
the height really drops to or even below 1, we plotted
map of thed(t1 ,t2) function in such a manner, that region
lying below the arbitrarily chosen 1.005 level were cut o
As seen in Fig. 5 there are four such regions within the P
knot: one in the shape of a sinusoidal band and three
shapes of almost circular patches.

The band contains in its middle the above mentioned c
tinuous line of self-contacts points; it is the axis of the tor
on which the knot is tied. The circular patches contain th
additional contact points; whenR becomes too small, over
laps appear around the points. Numerical analysis we
formed reveals that~with the five decimal digits accuracy w
applied! the overlaps occurring within these regions van
aboveR51.1158. ForR51.1159 the distance between th
closest points located within these regions of the knot eq
0.9999. For R51.1158 the distance is equal to 1.000
Where, within the PTT knot the self-contact points are
cated is shown in Fig. 6

FIG. 4. The map of the intraknot distances of the most tight P
knot.

FIG. 5. Maps of the intraknot distances as seen from above.
— the most tight PTT knot. Right — the most tight STT knot. T
sets of the self-contact points are located within the white region
the map.
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IV. SONO TIED TREFOIL KNOT

Considerations presented above indicated the value oR,
at which the PTT knot reaches its most tight conformatio
The lengthLt of the rope engaged in this conformation of th
trefoil knot equals 17.0883. Can one tie the trefoil knot us
a shorter piece of the rope? Theoretical considerations i
cate that this possibility cannot be excluded. As proven
@18# the piece of rope used to tie the trefoil knot cannot
shorter thanLm5(21A2)p'10.72. This lower limit leaves
a lot of place for a possible further tightening of the kno
Application of SONO reveals that the tightening is possib
providing the conformation of the knot is allowed to lea
the subspace of the parametrically tied torus conformatio
This happens spontaneously in numerical simulations
which the most tight PTT knot is supplied to SONO as t
initial conformation. SONO algorithm manages to make
shorter. In the simulations we performed, SONO reduced
length of the knot by about 4% toLexp516.38. The discrete
representation of the knot used in the simulations contai
N5327 nodes. Below we describe the final conformatio
For the sake of simplicity we shall refer to trefoil knots pr
cessed by the SONO algorithm as the SONO tied tre
~STT! knots.

The differences in the conformation of the most tight co
formations of the PTT and STT knots is a subtle one. T
essential difference lies in the structure of the sets of th
self-contact points. As mentioned above, the circular line
self-contact points present in the family of the PTT kno
stays intact asR is changed within the family. Tightening o
a PTT knot achieved by decreasing the radiusR of the torus
stops when additional dscrete points of contacts appea
three locations within the knot. This happens asR becomes
equal 1.1158. Further tightening of the knot within the fa
ily of PTT knots is not possible, it becomes possible with
the family of the STT knots.

During the tightening process carried out by SONO, t
set of the self-contact points undergoes both qualitative
quantitative changes. First of all, the line of contacts pres
in the PTT knot changes its shape becoming distinctly n
circular. Secondly, the three contact points give birth
pieces of new line of self-contacts. Unexpectedly, the n
pieces do not connect onto a new line, wiggling around a
crossing the old line, but they are mounted into the old l

T

ft

of

FIG. 6. Location of the self-contact points within the most tig
PTT knot.
1-3
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in such a manner, that a single, self-avoiding and knotted
of self-contacts is created. That this is the case was reve
by a precise analysis of the interknot distances function
map covering the interknot distances only within the ve
thin @1.000 00,1.000 02# interval shows two separated line
see Fig. 7, corresponding to a single, self-avoiding and kn
ted line of contact. See Fig. 8.

In addition to the line, a set of three points of self-conta
is formed. The points are located at places where the lin
self-contacts becomes almost tangent to itself. The s
contact line runs twice around the knot. As a result, each
the circular cross-sections of the rope stays here in to
with another two such sections. The close packed struc
formed in such a manner is much more stable than the st
ture of the most tight PTT knot, where single contacts w
predominant. Let us note, that Fig. 1~e! presented in Ref.
@16# a similar self-contact line structure can be seen. Un
tunately, inspecting the figure one cannot see, if the ‘‘s
contact spikes’’ shown there form a single, self-avoidin
knotted or a double, crossing itself line. The problem was
discussed in the text. Let us emphasize, however, that
difference between the two possibilities is confined to a ze
measure set.

V. DISCUSSION

Ideal knots are objects of which very little is known. Th
only knot whose ideal conformation is known rigorously
the unknot. Its ideal conformation, a circle of a radius ide
tical with the radius of the rope on which it is tied, can
conveniently described parametrically. The set of the s
contact points is here limited to a single point: the center
the circle. All circular sections of the rope meet at this poi

FIG. 7. The set of the self-contact points as seen within
intraknot distances map.
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The maximum local curvature and the minimum double cr
cal self-distance limiting conditions are simultaneously m

The situation in the case of the trefoil knot, the simple
non trivial prime knot, is radically different. Here the mo
tight parametrically defined conformation proves to be n
ideal. As demonstrated by the present authors, it can be ti
ened more with the use of the SONO algorithm. The se
the self-contact points becomes rebuilt during the tighten
process. Its topology becomes different. In the case the P
knot the set of the self-contact points consists of a circle
three separated points. As the numerical experiments
formed by us suggest, that in the case of the STT knot,
set of the self-contact points turns unexpectedly into a sin
line. The structure of the set of self contact points in oth
prime knots remains an open question.

The choice of the parametrization, Eqs.~3!–~5!, which we
used to define the conformation from which SONO star
its knot tightening action, was stimulated by the fact that
trefoil knot is a torus knot. Following Trautwein and Kauf
man @7# one could try to construct Fourier parametrizatio
that would be located closer to the most tight conformat
found by SONO. Preliminary calculations we performed
dicated that to reproduce with a reasonable accuracy
structure of the most tight STT knot one has to take in
account a large number of harmonics. One of the reason
the slow convergence of the Fourier parametrization is t
the Cartesian coordinate system is not well suited; in the c
of torus knots the toroidal coordinate system is more natu
Finding a precise but concise parametric description of
most tight trefoil knot is an interesting task.

ACKNOWLEDGMENTS

P.P. thanks Andrzej Stasiak, John Maddocs, Kenneth M
lett, Eric Rawdon, Robert Kusner, and Jason Cantarella
helpful discussions. This work was carried out under Proj
No. KBN 5 PO3B 01220.

FIG. 8. Location of the line of self-contact points within th
most tight STT~ideal! knot. A part of the rope was removed.
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